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Abstract
We point out that the celebrated GRW master equation is invariant under
translations, reflecting the homogeneity of space, thus providing a particular
realization of a general class of translation-covariant Markovian master
equations. Such master equations are typically used for the description of
decoherence due to momentum transfers between the system and environment.
Building on this analogy we show the exact relationship between the
GRW master equation and decoherence master equations, further providing
a collisional decoherence model formally equivalent to the GRW master
equation. This allows for a direct comparison of order of magnitudes of
relevant parameters. This formal analogy should not lead to confusion on the
utterly different spirit of the two research fields, in particular it has to be stressed
that the decoherence approach does not lead to a solution of the measurement
problem. Building on this analogy however the feasibility of the extension of
spontaneous localization models in order to avoid the infinite energy growth is
discussed. Apart from a particular case considered in the paper, it appears that
the amplification mechanism is generally spoiled by such modifications.

PACS numbers: 03.65.Ta, 03.65.Yz, 05.40.−a

1. Introduction

The measurement problem in quantum mechanics has attracted and puzzled physicists for
decades, still remaining, together with the connected issue of the relationship between quantum
and classical world, one of the main points of controversy, spurring further and deeper
thinking about the subject (see e.g. [1] for a most recent collection of papers covering the
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subject from different perspectives). An approach which has received considerable attention
is the one of the dynamical reduction models [2], putting forward stochastic and nonlinear
modifications of the Schrödinger equation in order to reconcile microscopic and macroscopic
world. Techniques, ideas and equations used in dynamical reduction models, and more
generally for the study of the measurement problem, are actually common to different fields
of physics, typically open system theory [3], even if used in a utterly different conceptual
framework, so that these different lines of research can benefit from each other. Not by
chance the original Ghirardi Rimini Weber (GRW) model for spontaneous localization [4] was
actually inspired by a seminal work on continuous quantum measurement [5] using similar
tools with a quite different interpretation, as recently stressed in a historical review of the
spontaneous localization approach to quantum mechanics [6].

In the present paper we want to focus on the original GRW master equation, whose
unravelling leads to a model of dynamical reduction, showing that it can be rewritten in a
simple way putting into major evidence its basic features, and especially the fact that it is a
particular realization of the general class of translation-covariant Markov master equations
described by Holevo [7]. In such a way one can also easily introduce a model of decoherence
due to collisional interactions with a background gas which would lead to a formally equivalent
master equation, so that a direct comparison of the orders of magnitude of the two different
effects can be straightforwardly done, obviously confirming the known estimates. A further
advantage of this approach is that one can now easily figure out a way to cope with the
problem of energy non-conservation in the original GRW model [8]. Extending the equivalent
decoherence model to also describe dissipation one indeed obtains a way to prevent the energy
from going to infinity. It appears however that in such a way one of the basic features of the
model, i.e. the increase of the localization effect on the centre of mass of a composed system
scaling with the number of its constituents, sometimes called amplification mechanism, is no
more granted on general grounds. A notable exception in this respect is the model considered
in [9], and we shall clarify why it is so.

The paper is organized as follows: in section 2 we show that the GRW master equation is
a member of a general class of translation-covariant master equations; in section 3 building on
the previous results we introduce a simple decoherence model formally equivalent to the GRW
master equation; finally in section 4 we point out when the problem of energy non-conservation
can be solved in such models, drawing conclusions in section 5.

2. Translational invariance and the structure of the master equation

It is well known that the GRW master equation is closely related to the master equations
used in decoherence models, so that e.g. in [10] it is considered of the form of the Gallis and
Fleming master equation for the description of collisional decoherence [11], and in [12] it is
argued that scattering and the GRW effect have almost identical effects on the reduced density
matrix. We now want to fully clarify and spell out in detail this relationship, showing that it
is rooted in a special property of the GRW master equation, i.e. its translation covariance. Let
us in fact call LGRW the relevant part of the GRW master equation [4], i.e. the contributions
apart from the Hamiltonian evolution

LGRW[ρ̂] = −λ

{
ρ̂ −

(α

π

) 3
2

∫
d3y e− 1

2 α(x̂−y)2
ρ̂ e− 1

2 α(x̂−y)2

}
, (1)

where x̂ and p̂ are the position and momentum operators of the particle subject to spontaneous
localization. One can immediately check that given the unitary representation Û(a) = e− i

h̄
a·p̂,

a ∈ R
3, of the group of translations the following covariance equation [13] is satisfied thanks
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to the invariance under translations of the Lebesgue measure:

LGRW
[
e− i

h̄
a·p̂ρ̂ e+ i

h̄
a·p̂] = −λ e− i

h̄
a·p̂

{
ρ̂ −

(α

π

) 3
2

∫
d3y e− 1

2 α(x̂+a−y)2
ρ̂ e− 1

2 α(x̂+a−y)2

}
e+ i

h̄
a·p̂

= e− i
h̄
a·p̂LGRW[ρ̂] e+ i

h̄
a·p̂. (2)

The action of the mapping LGRW giving the dynamics and the action of the unitary
representation of translations commutes, reflecting the invariance under translations of the
underlying model. This is actually a natural fact, since the modification of quantum mechanics
brought about by the GRW model would otherwise break homogeneity of space. In view of
this property it is quite natural to look at (1) within the general characterization of translation-
covariant Markovian master equations given by Holevo. For the present discussion it is enough
to consider the case of a bounded mapping L, so that its structure is given by [7]

L[ρ̂] =
∫

dµ(q)

∞∑
j=1

[
e

i
h̄
q·x̂Lj(q, p̂)ρ̂L

†
j (q, p̂) e− i

h̄
q·x̂ − 1

2

{
L

†
j (q, p̂)Lj (q, p̂), ρ̂

}]
, (3)

where q has the dimensions of momentum, Lj(q, ·) are bounded functions, µ(q) is a positive
σ -finite measure on R

3 and
∫

dµ(q)
∑∞

j=1 |Lj(q, ·)|2 < +∞. This is a general mathematical
result, and covariance under translations as in (2) can be easily checked. To get a grasp on
the physics that can be described by (3) let us point out that the action of the unitary operators
e

i
h̄
q·x̂ and e− i

h̄
q·x̂, on the left and the right of the statistical operator, respectively, corresponds

to a momentum transfer of amount q, as can be easily seen from the fact that

〈p|�̂|p〉 −→ 〈p − q|�̂|p − q〉, (4)

whenever

�̂ −→ e
i
h̄
q·x̂ �̂ e− i

h̄
q·x̂ . (5)

The appearance of the Lj(q, p̂) operators further implies that the momentum transferred to the
massive particle described by the statistical operator �̂ actually depends on the momentum of
the particle itself, so that effects like energy relaxation can be described: depending on the value
of its momentum and therefore on its kinetic energy the particle gains or looses momentum
and energy in the single collision events. Of course, in certain regimes this dependence can
be very weak, so that the momentum operator p̂ can be replaced by a reference value and the
mathematical structure of (3) simplifies a lot.

Let us now suppose in fact that the Lj functions only depend on q, thus becoming
C-numbers instead of operators. As we shall see later on this missing of the p̂ dependence
in Lj is strictly related to the infinite energy growth in spontaneous localization dynamical
reduction models. In view of the previous requirements we can set∫

dµ(q)

∞∑
j=1

|Lj(q)|2 ≡ λ < +∞, (6)

where λ is a constant with dimensions of frequency, and assuming dµ(q) absolutely continuous
with respect to the Lebesgue measure one can also set

dµ(q)

∞∑
j=1

|Lj(q)|2 ≡ λ d3q G̃2(q), (7)

where without loss of generality we can take G̃(q) positive and such that its square G̃2(q) is
integrable over L2(R3) and normalized to 1, so that G̃2(q) can be interpreted as a probability
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density. In particular, the positive function G̃(q) can be seen as a Fourier transform of a
function G(x) given by

G(x) =
∫

d3q

(2πh̄)
3
2

e
i
h̄
q·xG̃(q). (8)

In the considered case (3) highly simplifies and can be written as

L[ρ̂] = −λ

{
ρ̂ −

∫
d3q G̃2(q) e

i
h̄
q·x̂ρ̂ e− i

h̄
q·x̂

}
, (9)

so that by the positivity of G(x) one also has∫
d3q G̃2(q) e

i
h̄
q·x̂ρ̂ e− i

h̄
q·x̂ =

∫
d3q e

i
h̄
q·x̂G̃(q)ρ̂G̃(q) e− i

h̄
q·x̂

=
∫

d3q

∫
d3k δ3(k − q) e

i
h̄
q·x̂G̃(q)ρ̂G̃(k) e− i

h̄
k·x̂

=
∫

d3y

(2πh̄)3

∫
d3q

∫
d3k e

i
h̄
q·(x̂−y)G̃(q)ρ̂G̃(k) e− i

h̄
k·(x̂−y)

=
∫

d3y G(x̂ − y)ρ̂G†(x̂ − y), (10)

and therefore (9) becomes

L[ρ̂] = −λ

{
ρ̂ −

∫
d3q G(x̂ − y)ρ̂G†(x̂ − y)

}
. (11)

It is now immediately apparent that the GRW master equation is a special case of (11)
corresponding to the most natural choice for the function G̃(q), i.e. a Gaussian function, more
precisely

G̃GRW(q) =
(

1

απh̄2

)3/4

e− q2

2αh̄2 , (12)

or equivalently

GGRW(x) =
(α

π

)3/4
e− 1

2 αx2
, (13)

where we have used the notation q = |q| and x = |x|, so that (11) can be written in the two
equivalent ways

LGRW[ρ̂] = −λ

{
ρ̂ −

(α

π

) 3
2

∫
d3y e− 1

2 α(x̂−y)2
ρ̂ e− 1

2 α(x̂−y)2

}

= −λ

{
ρ̂ −

(
1

απh̄2

)3/2 ∫
d3q e− q2

αh̄2 e
i
h̄
q·x̂ρ̂ e− i

h̄
q·x̂

}
. (14)

While the first line corresponds to the usual way of writing the equation, the second line
puts immediately into evidence the connection with models of decoherence due to momentum
transfer events [10, 14–16]. Note that the matrix elements in the position representation of (9)
have the general form

〈x|L[ρ̂]|y〉 = −λ

{
1 −

∫
d3q G̃2(q) e

i
h̄
q·(x−y)

}
〈x|ρ̂|y〉, (15)

where due to the fact that G̃2(q) is a probability density its Fourier transform actually is a
characteristic function, with all its important properties [14, 17]. In particular, due to the fact
that the Fourier transform of a product is mapped into a convolution one has∫

d3q G̃2(q) e
i
h̄
q·x = (G ∗ G)(x) (16)
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and therefore

〈x|L[ρ̂]|y〉 = −λ{1 − (G ∗ G)(x − y)}〈x|ρ̂|y〉, (17)

as can be obtained directly from (11). In the particular case of a Gaussian function, the
convolution again leads to a Gaussian function, (GGRW ∗ GGRW)(x) = e− α

4 x2
, and the matrix

elements of the second line of (14) immediately give the correct result

〈x|LGRW[ρ̂]|y〉 = −λ{1 − (GGRW ∗ GGRW)(x − y)}〈x|ρ̂|y〉
= −λ

{
1 − e− α

4 (x−y)2}〈x|ρ̂|y〉. (18)

Note that in this particular case the characteristic function is real corresponding to the fact that
the Gaussian has zero mean. The GRW master equation is thus a possible realization of the
class of translation-covariant master equations given by (11), each uniquely characterized by
a rate λ and the choice of a probability density G̃2(q). A general analysis of master equations
like (11) and generalizations thereof in view of a theoretical description of decoherence, also
in connection with experiments, has been done in [14], to which we refer the reader for further
details.

A key feature of the GRW model, i.e. the amplification mechanism, is common to all
choices of probability density, as follows immediately from the fact that the position operator
only appears in the unitary operators e

i
h̄
q·x̂ and their adjoints. Suppose in fact to consider a

system of N particles, of one type for the sake of simplicity, so that the dynamics would be
given by

LGRW[ρ̂tot] =
N∑

i=1

Li
GRW[ρ̂tot], (19)

where ρ̂tot is the N particle statistical operator and

Li
GRW[ρ̂tot] = −λ

{
ρ̂tot −

∫
d3q G̃2

GRW(q) e
i
h̄
q·x̂i ρ̂tot e− i

h̄
q·x̂i

}
, (20)

where x̂i is the position operator of the ith particle. Switching to centre-of-mass coordinates
with the linear transformation

ri =
N∑

k=1

�ikxk, (21)

with �1i = mi

M

(
M = ∑N

i=1 mi

)
, so that

r1 =
N∑

i=1

mi

M
xi ≡ X, (22)

where X denotes the coordinate of the centre of mass, one immediately has

xi = X +
N∑

k=2

�−1
ik rk, (23)

and considering the partial trace with respect to the relative coordinates r2, . . . , rN one has

ρ̂CM = Trrelρ̂tot (24)

and exploiting the properties of the trace operation

TrrelLi
GRW[ρ̂tot] = −λ

{
ρ̂CM −

∫
d3q G̃2

GRW(q)Trrel
(
e

i
h̄
q·(X̂+

∑N
k=2 �−1

ik r̂k)ρ̂tot e− i
h̄
q·(X̂+

∑N
k=2 �−1

ik r̂k)
)}

= −λ

{
ρ̂CM −

∫
d3q G̃2

GRW(q)Trrel
(
e

i
h̄
q·∑N

k=2 �−1
ik r̂k e

i
h̄
q·X̂ρ̂tot e− i

h̄
q·X̂ e− i

h̄
q·∑N

k=2 �−1
ik r̂k

)}

= −λ

{
ρ̂CM −

∫
d3q G̃2

GRW(q) e
i
h̄
q·X̂ρ̂CM e− i

h̄
q·X̂

}
, (25)
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so that one has a closed equation for the centre-of-mass degrees of freedom with an equation
of the same form apart from a rescaled frequency λN = Nλ:

LGRW[ρ̂CM] = −Nλ

{
ρ̂CM −

∫
d3q G̃2

GRW(q) e
i
h̄
q·X̂ρ̂CM e− i

h̄
q·X̂

}
. (26)

This result ensures the amplification mechanism.

3. Equivalent decoherence model

As explained in the previous section the GRW master equation due to the property of covariance
under translations shares the same structure as many models used for the description of
decoherence. We now briefly point out a model of collisional decoherence which would
lead to the very same master equation, thus allowing for a direct comparison of the order
of magnitudes of the GRW effect and of collisional decoherence, as well as preparing for
the discussion of how to face the infinite energy growth. For the case of a massive particle
interacting through collisions with a free non-degenerate gas the master equation can be written
as

Lcoll[ρ̂] = 2π

h̄
(2πh̄)3n

∫
d3q |t̃ (q)|2

[
e

i
h̄
q·x̂√S(q, E(q, p̂))ρ̂

√
S(q, E(q, p̂)) e− i

h̄
q·x̂

− 1

2
{S(q, E(q, p̂)), ρ̂}

]
, (27)

where t̃ (q) is the Fourier transform of the two-body interaction potential between test particle
and gas particles, n is the density of the homogeneous background gas and S(q, E(q, p̂))

is a positive two-point correlation function, depending on momentum transfer q and energy
transfer (q, p̂) = q2

2M
+ p̂·q

2M
(M being the mass of the test particle), known as the dynamic

structure factor, accounting for the properties of the gas (see [18–21] for a reference and [22]
for further extensions). The dynamic structure factor accounts for energy and momentum
transfer between the test particle and gas and for a free gas of Maxwell–Boltzmann particles
can be written as

SMB(q, E) =
√

βm

2π

1

q
e
− β

8m

(2mE+q2)2

q2 (28)

with β being the inverse temperature and m the mass of the gas particles. Neglecting in the first
instance the energy dependence, related to dissipation and evaluating the dynamic structure
factor for zero energy transfer one has

Lcoll[ρ̂] = 2π

h̄
(2πh̄)3n

√
βm

2π

∫
d3q

|t̃ (q)|2
q

e− β

8m
q2[

e
i
h̄
q·x̂ρ̂ e− i

h̄
q·x̂ − ρ̂

]
. (29)

This expression is exactly of the same form as the GRW master equation if the interaction
potential t (x) is proportional to 1

x7/2 , so that according to the formula [23]∫
d3x e− i

h̄
q·xxµ = 2µ+ 3

2 (2π)
3
2



(
µ

2 + 3
2

)



(−µ

2

) (q

h̄

)−µ−3
, (30)

one has for t (x) = K
x7/2 , with K a coupling constant

t̃ (q) =
∫

d3x

(2πh̄)
3
2

e− i
h̄
q·xt (x) = −4

3

K(2π)
3
2

(2πh̄)3

(q

h̄

)1/2
, (31)
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and therefore

Lcoll[ρ̂] = −λcoll

{
ρ̂ −

(
1

αcollπh̄2

)3/2 ∫
d3q e

− q2

2αcollh̄
2 e

i
h̄
q·x̂ρ̂ e− i

h̄
q·x̂

}
, (32)

with constants given by

αcoll = 16π

(2πβh̄2)/m
= 16π

λ2
th

, (33)

with λth being the thermal wavelength of the gas particles, and

λcoll = nm
16π

λ2
th

8

9

(
2π

h̄

)3 |K|2
π

= nmαcoll
8

9

(
2π

h̄

)3 |K|2
π

, (34)

so that as expected the key ingredients are the thermal wavelength, the particle density and the
strength of the interaction potential, determining the scattering cross-section: the coherence
length λth of the gas sets the scale of the localization and the scattering cross-section fixes
the frequency of the localization events. Since the choice of the interaction potential was
essentially aimed at providing a possible decoherence model which exactly reproduces the
master equation in the GRW model, only order of magnitudes is here of relevance and typical
possible values of K [24] lead to a product αcollλcoll stronger by orders of magnitude than the
GRW effect (see the interesting work of Tegmark [12], also summarized in [10] and [2] for a
more detailed analysis of orders of magnitudes).

4. Energy increase in spontaneous localization dynamical reduction models

In the previous paragraph we have briefly introduced a collisional decoherence model which
exactly reproduces the GRW master equation with new parameters αcoll and λcoll fixed by
the bath properties. Exploiting this formal correspondence one can easily figure out how to
cure the infinite energy growth common to both dynamical reduction models and decoherence
models. From the standpoint of particle gas interaction this drawback is due to the fact that
in decoherence models energy transfers between the particle and bath, leading to dissipative
effects, are simply not described. One therefore simply has to look for an extension of (29)
including energy relaxation. Such an equation is the natural counterpart of the classical linear
Boltzmann equation and is given by (27) when the dependence on the energy transfer in the
dynamic structure factor is not neglected (see [18–22, 25, 26] for a more detailed treatment).
It still complies with translation covariance and is in fact a possible realization of (3) when the
functions Lj also depend on the momentum operator of the particle. It would therefore be quite
natural to build on such a model to propose, with a suitable interpretation of the parameters, a
master equation for a dynamical reduction model leading to a finite energy value, further using
a suitable unravelling preserving the localization features. A non-trivial difficulty however
appears, which was already encountered in early attempts to find an alternative model to
the GRW master equation [27], and is here strengthened by the available characterization of
translation-covariant master equations given by Holevo [7, 28]. When the functions Lj actually
depend on the momentum p̂ the amplification mechanism is generally no more available, apart
from very particular cases which we are now in the position to spell out. An interesting
possibility appears to be the one considered in [9], in which the master equation associated
with dynamical reduction is the quantum counterpart of the classical Fokker–Planck equation
describing both diffusion and dissipation. Let us look at the result in detail in order to see
why it works. As already mentioned (3) characterizes the bounded mappings giving rise to
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translation-covariant quantum-dynamical semigroups. Allowing for unbounded operators a
further contribution becomes relevant

L[ρ̂] = − i

h̄
[ŷ0 + Heff(x̂, p̂), ρ̂] +

r∑
k=1

[
Kkρ̂K

†
k − 1

2

{
K

†
kKk, ρ̂

}]
, (35)

where

Kk = ŷk + Lk(p̂),

ŷk =
3∑

i=1

aki x̂i k = 0, . . . , r � 3 aki ∈ R,

Heff(x̂, p̂) = h̄

2i

r∑
k=1

(
ŷkLk(p̂) − L

†
k(p̂)ŷk

)
,

a particular realization of which leads to the model considered in [9] (here considered in three
dimensions with sum over Cartesian indices understood)

L[ρ̂] = − λ̄

2
[x̂, [x̂, ρ̂]] − λ̄ᾱ2

2h̄2 [p̂, [p̂, ρ̂]] − i
λ̄ᾱ

h̄
[x̂, {p̂, ρ̂}]. (36)

The model is defined in terms of two constants λ̄ and ᾱ, assumed to vary with the mass of the
particle as follows:

λ̄ = m

m0
λ̄0, ᾱ = m0

m
ᾱ0, (37)

where m0 is a reference mass, while λ̄0 and ᾱ0 are fixed constants. This scaling will turn out
to be crucial in order to allow for the amplification mechanism. Let us now directly check this
mechanism, considering a system of N particles and taking the partial trace with respect to the
relative coordinates. Using (21)–(24) together with

πi =
N∑

k=1

�−1
ki pk, (38)

with πi being the variables canonically conjugated to ri , exploiting �−1
i1 = 1, so that π1 = P

and therefore

pi = mi

M
P +

N∑
k=2

�kiπk, (39)

with P ≡ ∑N
i=1 pi being the total momentum we obtain as a consequence the important

relation

N∑
i=1

N∑
k=2

�kiπk = 0. (40)

Let us now take the partial trace of (36) generalized to a sum of N contributions corresponding
to particles of mass mi with respect to the relative coordinates. One immediately has, exploiting
the linearity of commutator and anticommutator with respect to their arguments, as well as
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the invariance of the trace operation under a cyclic transformation

L[ρ̂CM] = −1

2

N∑
i=1

λ̄i Trrel

([
X̂ +

N∑
k=2

�−1
ik r̂k,

[
X̂ +

N∑
k=2

�−1
ik r̂k, ρ̂tot

]])

− 1

2h̄2

N∑
i=1

λ̄i ᾱ
2
i Trrel

([
mi

M
P̂ +

N∑
k=2

�kiπ̂k,

[
mi

M
P̂ +

N∑
k=2

�kiπ̂k, ρ̂tot

]])

− i

h̄

N∑
i=1

λ̄i ᾱi Trrel

([
X̂ +

N∑
k=2

�−1
ik r̂k,

{
mi

M
P̂ +

N∑
k=2

�kiπ̂k, ρ̂tot

}])

= −1

2

N∑
i=1

λ̄i[X̂, [X̂, ρ̂CM]] − 1

2h̄2

N∑
i=1

λ̄i ᾱ
2
i

(mi

M

)2
[P̂, [P̂, ρ̂CM]]

− i

h̄

N∑
i=1

λ̄i ᾱi

mi

M
[X̂, {P̂, ρ̂CM}] − i

h̄

N∑
i=1

λ̄i ᾱi

[
X̂, Trrel

({
N∑

k=2

�kiπ̂k, ρ̂tot

})]
.

(41)

Now the scalings given in (37) show their relevance in leading to

L[ρ̂CM] = −1

2
λ̄CM[X̂, [X̂, ρ̂CM]] − 1

2h̄2 λ̄CMᾱ2
CM[P̂, [P̂, ρ̂CM]] − i

h̄
λ̄CMᾱCM[X̂, {P̂, ρ̂CM}]

− i

h̄
λ̄CMᾱCM

[
X̂, Trrel

({
N∑

i=1

N∑
k=2

�kiπ̂k, ρ̂tot

})]
, (42)

where

λ̄CM = M

m0
λ̄0, ᾱCM = m0

M
ᾱ0, (43)

and thanks to (40) finally the result

L[ρ̂CM] = −1

2
λ̄CM[X̂, [X̂, ρ̂CM]] − 1

2h̄2 λ̄CMᾱ2
CM[P̂, [P̂, ρ̂CM]] − i

h̄
λ̄CMᾱCM[X̂, {P̂, ρ̂CM}], (44)

reflecting the amplification mechanism. This is however just true because the last term of (36)
describing friction is simply linear in the momentum, and once the scalings (37) are given
one can exploit the fundamental relation (40) to show that the term breaking the amplification
mechanism is zero. As it appears an exceptional situation. A further possibility of allowing for
a momentum dependence in Lj which allows for an explicit verification of the amplification
mechanism is something like Lj ∝ e− i

h̄
a·p̂, as in the structure of Weyl-covariant generators of

quantum-dynamical semigroups [28]; in such a case however one also has boost covariance
and therefore no friction effect leading to energy relaxation.

5. Conclusions and outlook

Exploiting the fact that the GRW master equation for the description of spontaneous
localization has the property of being covariant under translations, thus not breaking
homogeneity of space, it becomes natural to write it in a way which makes the connection
with the general structure of translation-covariant master equations obtained by Holevo
[7, 28] immediately apparent. In such a way the formal connection with master equations for
the description of decoherence [14] becomes straightforward and can be spelled out in detail.
This analysis in particular shows that the GRW master equation arises in a most natural way: it
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is essentially fixed by asking for a Markovian dynamics to be described in terms of momentum
transfer events, and therefore translationally invariant, where the momentum transfer in each
event is random and described by a Gaussian distribution.

One can further check that the amplification mechanism generally holds for this class
of translation-covariant master equations for the description of decoherence, and also specify
a collisional decoherence model which is formally exactly equivalent to the GRW master
equation. Of course, the parameters appearing in the model, related to bath properties, have
quite different orders of magnitudes, further corroborating the known fact that decoherence is
generally much stronger than the GRW effect. Building on the formal analogy one can ask
the question whether the known extensions of the decoherence model to cope with dissipative
effects [21, 22] might be of help in guessing a generalization of the GRW master equation
not leading to the well-known infinite energy growth. We show on the basis of the general
characterization of translation-covariant master equations available that the answer is generally
negative, due to the loss of a simple amplification mechanism. A notable exception worked out
in [9] is however pointed out, which presently appears as the only possibility in this direction.
Note that the problem of energy growth can also be overcome by considering different models
of quantum state reduction, where the localization operator is given by the energy of the
system; however such models do not automatically grant space localization of macroscopic
objects (see [29] or [30, chapter 6], for a general review of the subject and the comparison
between the two different approaches).

As a final remark we want to stress the different meaning of dynamical reduction models
and of the decoherence approach; the latter one not providing a solution to the measurement
problem [31]. However, the formal analogies among the two research fields have been used
in the present paper, exploiting results on the structure of master equations for the description
of decoherence in order to better understand the properties of dynamical reduction models.
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